

Interactomics of the degradation of a recalcitrant **108B** pesticide by a soil-enriched bacterial consortium

Sotirios Vasileiadis^{1*}, Chiara Perruchon¹, Michalis Omirou² Nicole Steinbach³, Antonis Chatzinotas³, Dimitrios G. Karpouzas¹

¹Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece ²Agricultural Research Institute of Cyprus, Nicosia, Cyprus

³Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH – UFZ, Leipzig, Germany

*Funding: H2020 MSCA-IF-2017 project EMIGRATE (grant #749463)

Background

Recalcitrant to degradation compounds used in agriculture pose a challenge for environmental management. Thiabendazole (TBZ), a benzimidazole commonly used protectively against postharvest fungal diseases and as anthelminthic in livestock farming, is highly stable ($DT_{50} > 1-2$ years) in the environment without previously known potent biodegraders. A recently soil-enriched bacterial consortium able to rapidly degrade TBZ, resulted in no TBZ-degrading isolate, suggesting complex interactions between members. We employed an "omics" approach to elucidate the microbial interactions that maintain the degradation consortium capability.

TBZ vs SUC as sole C-source:

A. Major differences at the Shannon index (i.e. higher diversity of low abundance members with TBZ) and less differences at the inverse Simpson (reflecting more dominant members)

B. Distinct community structures, yet, stable beyond 10% TBZ degradation

30,0

C. Sphingomonas, Hydrogenophaga, Sphingopyxis, Bradyrhizobiaceae higher under TBZ

¹³C vs ¹²C TBZ as sole C-source:

D. Sphingomonas is the major ¹³C-labeled ring assimilator

Meta – genomics/bolomics/transcriptomics

A. <u>Metagenome assembly and binning</u> resulted in six dominant bins ($\geq 1\%$ RA) and 13 less abundant of high/excellent (according to MiGA) quality genomes (more than 80% completeness), with closest hits with mainly oligotrophic/autotrophic lifestyles and also bioremediation potential.

Metawatt (Strous et a	awatt (Strous et al 2012; 10.3389/fmicb.2012.00410) bin IDs and stats					MiGA (Rodriguez-R et al, 2018; 10.1093/nar/gky467) NCBI hits			MiGA binning quality			Bin relative abundance				
									MiGA classification							
								AAI or ANI	confident at	completeness	contamination	quality	13C TBZ 10%	50% TBZ	100% TBZ	24 h post TBZ
Bin ID	contigs (#)	size (nt)	N50 (nt)	GC (%)	Class	Family	Strain	(%)	level	(%)	(%)	(%)	degradtion	degradation	degradation	dissapearance
Bin 3X21F	38	3,388,361	206,417	62.44	α- Proteobacteria	Sphingomonadaceae	Sphingomonas sp. DC 6 NZ CP021181	61.91 (AAI)	Genus	95.5	0.9	91	64.76	23.96	19.62	10.05
Bin 34A	52	4,618,291	136,635	65.21	γ-Proteobacteria	Ectothiorhodospiraceae	Thiohalobacter thiocyanaticus NZ AP018052	45.72 (AAI)	Class	94.6	0.9	90.1	1.11	13.48	22.78	29.17
Bin 19A	189	5,487,813	61,470	65.83	β-Proteobacteria	Comamonadaceae	Hydrogenophaga sp. RAC07	78.96 (AAI)	Subspecies	90.1	1.8	81.1	0	11.71	1.83	0
Bin 9B	25	4,220,254	315,044	62.13	α- Proteobacteria	Bradyrhizobiaceae	Bradyrhizobiaceae bacterium SG 6C NZ CM001195	92.33 (ANI)	Subspecies	94.6	0.9	90.1	2.58	5.93	17.83	25.23
Bin 13A	118	5,825,532	101,074	67.84	β-Proteobacteria	Comamonadaceae	Hydrogenophaga sp. RAC07	81.07 (AAI)	Subspecies	91.9	6.3	60.4	0.05	5.18	2.24	2.06
Bin 23F	283	5,140,160	107,438	69.57	β-Proteobacteria	Comamonadaceae	Hydrogenophaga sp. PBC NZ CP017311	89.76 (AAI)	Subspecies	89.2	2.7	75.7	1.29	4.21	10.02	12.35

degradation of initial (2268 genes

mean log CPN

B. <u>Metabolome</u>: The main transformation product is 1,3-thiazole-carboxamidine, and its further transformed

	2	1
thiabendazole	2,50E+07	metabolite
		metabolite

3862 61,120,920 101,474 13 low abundance bin 4,814 100Kh hin 1,464,056 24,154 1650 7,278,568 6788 98,543,955 100,895 Total

<u>Metatrascriptome</u>

Metagenome-wide gene expression patterns show strong structural differences between the TBZ and the SUC treatments and also between the initial TBZ degradation stages and the post TBZ degradation stages

D. Overall and per bin gene-expression/treatment associations at gene and SEED functional category level

L. Same as D between initial and post TBZ degradation stages

C. Sphingomonas bin subnetwork correlations of SEED terms for DE genes. Bins 23F and 9B show co-expression of relevant functional categories. 23F supports cobalamin biosynthesis while Sphingomonas consumes

G. Example of cobalamin biosynthesis locus expression of TBZ vs SUC

17th International Symposium on Microbial Ecology, Leipzig, Germany, August 12-17, 2018

Concluding remarks

- Sphingomonas carries out the upper TBZ degradation pathway involving fusion of the benzimidazole ring ✓ The consortium is structurally stable along TBZ degradation
- ✓ The consortium members encompass putative genes coding for the degradation of array of an emerging/attested pollutants (e.g. steroids, PAHs cresol, naphthalene, anthracene)
- Several, putatively plasmidial, TBZ-degradation related functions were not assigned to genome bins
- ✓ Specific autoinducers and generic signaling compounds predominate the identified microbial interactions
- ✓ Cobalamin-associated auxotrophy seemingly regulates the growth of the major degrader
- ✓ A *Bradyrhizobiace* strain possibly takes over for the 1,3thiazole-carboxamidine degradation